四、小结。
通过这节课的学习,你有哪些收获和感想?
第二课时(小结)
教材说明
1.本单元的内容结构及其地位作用。
通过前面的学习,学生已经掌握了收集、整理、描述、分析数据的基本方法,会用统计表(单式和复式)和条形统计图(单式和复式)来表示统计结果,并能根据统计图表解决简单的实际问题;了解了统计在现实生活中的意义和作用,建立了统计的观念。本单元此基础上,认识一种新的统计图——折线统计图。帮助学生了解折线统计图的特点,根据折线的起伏变化对数据进行简单的分析。
本单元内容安排如下表:
2.本单元教材的编写特点。
(1)合理运用迁移规律,以学生已有的知识经验为基础,引导学生掌握新知识。由于折线统计图和条形统计图比较相似,只是不画直条,而是按照数据的大小描出各点,再用线段顺次连接起来。因此教材中选用了数据富于变化的条形统计图,从而引出另一种表达方式,自然地过渡到折线统计图。例如,例1通过对某城市六年来中小学生参观科技展人数的统计,以条形统计图为基础引出折线统计图,再引导学生观察这种统计图的特点,明确折线统计图既可以反映数量的多少,更能反映数量的增减变化,进一步了解折线统计图的特征。
(2)提供富有现实意义的素材,使学生进一步体会统计的现实意义。
本单元精心地选取了大量的生活素材,使统计知识与生活建立紧密的联系。如:学生参观科技展的人数、身高的变化、月平均气温的变化、病人的体温记录、旅游消费情况等。再如“生活中的数学”栏目中,引入20xx年北京市非典疫情的数据,使学生在了解生活常识的同时,充分认识统计的现实意义。
(3)培养学生在统计的过程中发现问题、解决问题及进行合理推测的能力。
教材在安排根据统计图回答问题时,为学生自己发现问题、提出问题及自己解决问题提供了较大的空间。同时,让学生感悟由于数据变化带来的启示,并能合理地进行推理与判断。如练习十九中的第4题。
教学建议
1.重视学生已有的知识与生活经验。
学生已经掌握了初步的统计知识,会对数据进行简单的描述、分析,教学时可充分利用学生已有的经验,以知识迁移的方式建立新旧知识之间的联系,放手让学生独立思考,互相合作,培养学生的创新意识与思维能力。
2.进一步认识统计的现实意义。
统计与生活是紧密联系的,折线统计图能更清楚地反映出数据的增减变化。
第七单元 数学广角
单元计划
教学目标:
(1)使学生通过简单的事例,初步体会运筹思想和对策论方法在解决实际问题中的运用。
(2)使学生认识到解决问题策略的多样性,形成寻找解决问题最优方案的意识。
(3)让学生感受到数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,初步培养学生的应用意识和解决实际问题的能力。
(4)使学生逐步养成合理安排时间的良好习惯。
教学重点:能从解决问题的多种方案中寻找出最优的方案。
教学难点:从解决问题的多种方案中寻找最优的方案。
课时安排:4课时
第一课时
教学目标:
1.借助围棋盘探讨封闭曲线(方阵)中的植树问题;
2.初步培养学生从实际问题中探索规律,找出解决问题的有效方法的能力;
3.让学生感受数学在日常生活中的广泛应用。
教学重点:从封闭曲线(方阵)中探讨植树问题。
教学难点:用数学的方法解决实际生活中的简单问题。
教学过程:
一、 引导探究,发现“两端要种”的规律
1. 创设情境,提出问题。
①课件出示图片。
介绍:这是我县新修的一条公路。公路中间有一条绿化带,现在要在绿化带中种一行树,怎么种呢?
出示题目:这条公路全长1000米,每隔5米种一棵树(两端要种)。一共需要多少棵树苗?
②理解题意。
a. 指名读题,从题中你了解到了哪些信息?
b. 理解“两端”是什么意思?
指名说一说,然后师实物演示:指一指哪里是这根小棒的两端?
说明:如果把这根小棒看作是这条绿化带,在绿化带的两端要种就是在绿化带的两头要种。
③算一算,一共需要多少棵树苗?
④反馈答案。
方法一:1000÷5=200(棵)
方法二:1000÷5=200(棵) 200 +2=202(棵)
方法三:1000÷5=200(棵) 200 +1=201(棵)
师:现在出现了三种答案,而且每种答案都有不少的支持者,到底哪种答案是正确的呢?咱们可不可以画图模拟实际种一种?如果从图上一棵一棵种到1000米,数一数,是不是就能知道到底谁的答案是正确的了呢?
2. 简单验证,发现规律。
①画图实际种一种。
课件演示:我们用这条线段表示这条绿化带。“两端要种”,我们从绿化带的这头开始,先在头儿上种上一棵,然后隔5米再种一棵,再隔5米再种一棵,再隔5米再种一棵,照这样一棵一棵的种下去……
师:大家看,已经种了多少米?(45米)这么长时间才种了45米,一共要种多少米?(1000米)要一棵一棵一棵一直种到1000米呀?!同学们,你有什么想法?(太累了,太麻烦了,太浪费时间了)
师:老师也有同感,一棵一棵种到1000米确实太麻烦了。其实,像这种比较复杂的问题,在数学上还有一种更好的研究方法,大家想知道吗?这种方法可不是一般的方法。大家听好喽,这种方法就是:遇到比较复杂的问题先想简单的,从简单的问题入手来研究。比如:1000米的路太长了,我们可以先在短距离的路上种一种,看一看。大家想不想用这种方法试一试?
②画一画,简单验证,发现规律。
a. 先种15米,还是每隔5米种一棵,画图种一种,看种了多少棵?比一比,看谁画得快种的好。(板书:3段 4棵)
b. 跟上面一样,再种25米看一看,这次你又分了几段,种了几棵?(板书:5段 6棵)
c. 任意选择一段距离再种一种,看这次你又分了几段,种了几棵?从中你发现了什么?
(板书: 2段 3棵;7段 8棵;10段 11棵。)
d. 你发现了什么?
小结:你们真了不起,发现了植树问题中非常重要的一个规律,那就是:
(板书:两端要种:棵树=段数+1)
③应用规律,解决问题。
a. 课件出示:前面例题
问:应用这个规律,前面这个问题,能不能解决了?那个答案是正确的?
1000÷5=200 这里的200指什么?
200 +1=201 为什么还要+1?
师:这个“秘方”好不好?
通过简单的例子,发现了规律,应用这个规律解决了这个复杂的问题。以后,再遇到“两端要种”求棵树,知道该怎么做了吗?
b. 解决实际问题
运动会上,在笔直的跑道的一侧插彩旗,每隔10米插一面(两端要插)。这条跑道长100米,一共要插多少面彩旗?(学生独立完成。)
问:这道题是不是应用植树问题的规律解决的?
师:看来,应用植树问题的规律,不仅仅能解决植树的问题,生活中很多类似的现象也能用植树问题的规律来解决。
小结:刚才,我们应用发现的规律,解决了一个实际问题。我们已经知道,“两端要种”求棵树用段数+1;如果“两端不种”棵树和段数又会有怎样的关系呢?
第二课时
一、 合作探究,“两端不种”的规律
1. 猜测“两端不种”的规律。
猜测结果是:两端不种:棵树=段数-1
师:到底同学们的猜测是不是正确呢?我们还是用前面学习的方法,举简单的例子画一画,种一种。
要求:每人先独立画一段路种种看;然后4人一组进行交流。你们组发现了什么规律?
2. 独立探究,合作交流。
3. 展示小组研究成果,发现规律,验证前面的猜测。
,人教版小学数学四年级上册教案(下)