一、分配思想
分配思想就是根据题中的数量关系,从已知条件入手,通过列式,先求出单位“1”,再由单位“1”的量进行分配。其具体思路我们还是从第十一册教材第63页的思考题谈起。
1.基本题:同学们参加野营活动。一个同学到负责后勤工作的老师那里去领碗,老师问他领多少,他说领55个。又问:“多少人吃饭?” 他说:“一人一个饭碗,两人一个菜碗,三人一个汤碗。”算一算这个同学给多少人领碗。
〔分析与解〕这是一道六年级的思考题,解答此题可以用多种方法。
(1)方程法。
设:共有X人
X+X+X=55
解得X=3O。
(2)算术法。
55÷(l++)=55÷1=3O(人)
(3)此题还可以直接求最小公倍数来解。
根据“一人一个饭碗,二人一个菜碗,三人一个汤碗”的条件可得:[1、2、3]=6(6是1、2、3的最小公倍数)。即:每6人为一桌,每桌所需的碗数为:饭碗:6÷l=6(个);菜碗:6÷2=3(个);汤碗:6÷3=2(个)。共计:6+3+2=11(个)→每桌的总碗数。这样野营的同学正好可以安排:55÷11=5(桌),而每桌都是6人,即共有6×5=3O人参加野营。
此题运用最小公倍数来解,不但可以拓宽六年级同学的解题思路,更重要的是为四、五年级同学开辟了一条解题途径。
2.变形题。节日期间给某班同学发水果,每人3个桔子,每2人3个苹果,每4人3根香蕉,最后又给每人发1个梨,结果共发水果2OO个,求该班有多少个同学?每种水果各多少个?
[分析与解] 每人所发水果情况:桔子3(个);苹果1
〔分析与解〕此题综合性很强,实际上是把前两个分配思想的小题合在一起。每人所发饮料情况如下,
汽水:2(瓶) 果汁:2÷3=(瓶) 雪碧:2÷6=(瓶)
列式: 180÷(2++)=6O(人)
(其它方法同学们自己列式解答)
植树情况:松树 1×6O=6O(棵) 杨树 6O×2=150(棵)
柳树 16O×1=8O(棵) 杏树 6O×
综合算式:180÷(2++)×(1+2+)=326(棵)
综上所述,我们把这种解题思路称之为“分配思想”。同学们,你掌握了没有?
二、守恒思想
所谓守恒思想,就是抓住不变的量解题,在这一类问题中其中至少有一个条件是守恒的。守恒的类型有以下几种,即:明守恒、暗守恒、总量守恒。
1.明守恒:明守恒就是通过已知条件,可以直接求出守恒不变的量,再根据这个量解决所要求的问题。以下举例说明.
例:某班共有45人,其中女生占总数的,后来又转来了几名女生,这时女生就占现在人数的,求转来几名女生?
〔分析与解〕根据题意,女生人数增加了,而男生不变,抓住这个守恒量列式解答。
男生:45×(1-)=25(人)
现在总人数:25÷(l-
,分数应用题解题思想介绍