由此列式得
甲组原来有:(190-5×2)÷(1+×
+
)=80(人)
乙组原来有:80×+65(人)
丙组原来有:80×+5=45(人)
七、一分为二思想
本文所谈的一分为二思想,是在解题时将题中的已知条件一分为二,即:根据需要将已知的数量和分率暂时分开,分别进行“量”转化和“率”转化,从而达到列式解答的目的。
例1.某车间男工人数比女工人数多28人,参加元旦联欢活动,女工全部参加,男工则有的人没有参加,已知参加活动的共有105人,求原来男女工各有多少人?
[分析与解]由题意得:由于女工全部参加活动,则将女工人数看作单位“1”,将男工人数一分为二,即:把男工分成同女工人数相等的单位“1”和多出的28人。(单位“1”叫分率,简称“率”,28人叫数量,简称“量”。)而男工只有1-=
的人参加活动。由此,根据一分为二思想分别进行“率”转化和“量”转化。
(1)男工参加的人数相当于女工人数即单位“1”的,即:“率”的→1×=
。
(2)28人的,即:“量”的28×
=21(人)。
于是列综合算式得女工人数为:
(105-28×)÷(1+1×
)=84÷1
=48(人)
男工人数为:48+28=76(人)
(此题也可以用方程解,请同学们自己试试。)
例2.甲乙两组工人共计划加工一批零件,已知甲组完成了总数的还少500个,乙组完成了比甲组的
还多200个,求这批零件共有多少个?
[分析与解]将条件摘录如下:
甲=总-500
乙=甲+200
乙=(
上一页 [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] 下一页
,分数应用题解题思想介绍