标签:六年级数学教学设计,小学数学教学设计,
新课标人教版六年级上册数学《第三单元 分数除法》教案,http://www.dbk123.com
6÷2
8÷2
3、除法中的商不变规律是什么?举例:6÷8=(6×2)÷(8×2)=12÷16
4、分数的基本性质是什么?举例: = =
二、新授
1、猜测比的性质:除法有“商不变性质”,分数也有“分数的基本性质”,根据比与除法和分数的关系,同学们猜想看看,比也有这样的一条性质吗?如果有,这条性质的内容是什么?(学生猜测,并相互补充,把这条性质说完整)
2、验证猜测的性质能否成立:学生以四人小组为单位,讨论研究。
6÷8=(6×2)÷(8×2)=12÷16
6:8=(6×2)∶(8×2)=12:16
6:8=(6÷2)∶(8÷2)=3:4
6÷8=(6÷2)÷(8÷2)=3÷4
3、 小组派代表说明验证过程,其他同学补充说明。
4、 正式得出“比的基本性质”:比的前项和后项同时乘或除以相同的数(0除外),比值不变,这叫做比的基本性质。
5、 教学例1
(1) 出示例题:把下面各比化成最简单的整数比
15∶10 ∶ 0.75∶2
(2) 引导学生审题,说说题目提出了几个要求(两个,一是化成整数比,二必须是最简的)
(3) 指名学生说出自己化简的方法,全班评判。
三、练习
1、P46“做一做”
2、练习十一第2题(提醒学生第二个长方形,长的那条为“长”,短的那条为“宽”)
四、总结
今天我们学习了什么知识?比的基本性质可以应用在哪些方面?
教学追记:
本堂课,是一节充分体现以学生为主的课。教学中,,由除法的“商不变性质”和“分数的基本性质“就能自然而然的联想到是否也存在着“比的基本性”。对此,我没有束缚学生的思维,而是顺从学
www.dbk123.com
生的思维规律,鼓励他们大胆猜想,并通过举例、论证等方法小心验证,最后确切地得出了“比的基本性质”。在“大胆猜想——小心验证——得出结论”这一过程中,我尽量地放手给学生,让学生自主课堂,步步深入,而教师只在关键处起点拨作用。这样,整堂课的教学,学生的学习兴趣浓,积极性高,成就感足,理解和记忆也就自然较为深刻。
(3)比的应用
教学目标:
1、 结合生活实例,使学生进一步掌握按比例分配应用题的结构特点和解题思路,能运用这个知识来解决一些日常工作、生活中的实际问题。
2、 培养学生运用知识进行分析、推理等思维能力,以及探求解决问题途径的能力。
3、渗透数学的对应思想及函数思想,培养学生认真审题、独立思考、自觉检验的好习惯,增强学好数学的信心。
教学重点:
进一步掌握按比例分配应用题的结构特点和解题思路。
教学难点:
正确分析解答比例分配应用题。
教学过程:
一、复习。
1、我们在教学中学过平均分,平均分的结果有什么特点?(每份都相等)在日常生活中,为了分配的合理,往往需要把一个数量分成不等的几部分,即把一个数量按照一定的比来进行分配。这种方法通常叫按比例分配。
2、一瓶500ml的稀释液,其中浓缩液和水的体积分别是100ml和400ml,__________?(补充问题并解答)
二、新授。
1、教学例2。
(1)出示例2:
(2)引导学生弄清题意后,问:题目中要分配什么?是按什么进行分配的?(分配500ml的稀释液;浓缩液和水的体积按1:4进行分配。)
(3)问:“浓缩液和水的体积1:4”,是什么意思?(就是说在500ml的稀释液,浓缩液占1份,水的体积占1份,一共是5份,浓缩液占稀释液的5分之4,水的体积占稀释液的5分之1。)
(4)你能求出两种各多少ml吗?怎样求?(引导学生进行解题)
① 稀释液平均分成的份数:1+4=5
② 1
1+4
浓缩液的体积:500× =100(ml)
③ 1+4
4
水的体积:500× =400(ml)
答:稀释液100ml,水400ml。
(5)如何检验解答是否正确呢?(说明:检验的方法有两种:一是把求得的浓缩液和水的体积相加,看是不是等于稀释液的总体积;二是把求得的浓缩液和水的体积写成比的形式,看化简后是不是等于1:4
(6)学生试做:练习:做一做第1题。(订正时说说解题时先求什么?再求什么?)
2、补充练习
(1)出示:学校把栽280棵树的任务,按照六年级三个班的人数分配给各班。一班有47人,二班有45人,三班有48人。三个班各应栽树多少棵?
(2)引导学生弄清题意后,问:题中要把280棵树按照什么进行分配?(着重使学生明确要按照一班、二班、三班的人数的比来分配,即按47:45:48来分配。)
(3)根据一班、二班、三班的人数怎样算出各班栽的棵数占总棵数的几分之几?(使学生明确:要先算三个班总共有多少人(即总份数),然后才能算出各班栽的棵数占总棵数的几分之几。)
(4)怎样分别算出各班应种的棵数?引导学生解答:
① 三个班的总人数:47+45+48=140(人)
② 一班应栽的棵数: 280× = 94(人)
③ 二班应栽的棵数: 280× = 90(人)
④ 三班应栽的棵数: 280× = 96(人)
答:一班栽树94棵,二班栽树90棵,三班栽树96棵。
(5)学生进行检验。
(6)学生试做“做一做”中的第2题。
三、巩固练习。
练习十二的第1、3题。
四、布置作业。
练习十二第2、4、5、6、7题。
教学追记:
本节课的内容相对而言较容易掌握,因而学生在学习中并没有出现什么困难。教学中,我两种方法并重,并让学生理解两种方法的殊途同归之处。对于类型稍有不同的题目,如“做一做”第2题,以人数为比例进行分配的,我在教学时添加了一道例题,教学后再让学生独力完成第2题,这样的教学让学生学得较为轻松,也对这种类型题掌握得较扎实。
4、整理和复习
整理复习(1)
复习目标:
使学生进一步掌握本章所学的基本概念和计算法则,提高学生的计算能力和解题能力。
复习重点:分数除法的计算方法,化简比。
复习难点:正确计算分数除法。
复习过程:
一、复习分数除法的意义和计算法则
1、这一章我们学习了分数除法的有关知识.请大家回忆一下分数除法有几种类型?
(1)分数除以整数,例如 ÷5;
(2)一个数除以分数,它又包括整数除以分数,例如20÷ ;和分数除以分数,例如 ÷ 。
(3)做第52页“整理和复习”的第2题。
2、分数除法的意义
(1)第52页“整理和复习”的第1题:要把这道乘法算式改写成两道除法算式,应该怎么办呢?(引导学生根据乘、除法的关系进行改写,然后让学生将改写的算式填写在书上)
(2)让学生说说是怎样题改写成两道分数除法算式的。
(3)分数除法的意义是什么呢?(使学生明确,分数除法的意义与整数除法的意义相同,都是:已知两个因数的积与其中一个因数,求另一个因数的运算)
3、分数除法的计算法则
(1)分数除以整数应该怎样计算?一个数除以分数应该怎样计算?
(2)引导学生概括出分数除法的统一计算法则:除以一个数(0除外),等于乘这个数的倒数。
(3)完成P52“整理和复习”第2题。
(4)P53练习十三第2题。
二、复习比的意义和基本性质
1、比的意义
(1)什么叫做比?(两个数相除又叫做两个数的比)什么叫做比值?(比的前项除以后项所得的商.)
(2) 以“3∶2”为例,让学生分别说出“比号”“前项”和“后项”。
3∶2 =1.5
┇ ┇ ┇ ┇
前 比 后 比
项
上一页 [1] [2] [3] [4] [5] 下一页
,新课标人教版六年级上册数学《第三单元 分数除法》教案